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Abstract. If f is a conformal mapping defined on a connected open subset Ω
of a Carnot group G, then either f is the composition of a translation, a dilation
and an isometry, or G is the nilpotent Iwasawa component of a real rank 1 simple
Lie group S, and f arises from the action of S on G, viewed as an open subset
of S/P , where P is a parabolic subgroup of G and NP is open and dense in S.

1. Introduction

The study of conformal and quasiconformal maps on nilpotent Lie groups began
with G. D. Mostow’s work on strong rigidity [15]. P. Pansu [17] developed the the-
ory, defining Carnot groups and Carnot–Carathéodory spaces, and showed that in
some cases, quasiconformal maps are automatically conformal. Later, M. Gromov
used Carnot groups to describe the structure of groups of polynomial growth [11].
In a parallel development, N. Tanaka (and his school) developed the theory of pro-
longation of graded Lie algebras [18] with a view to studying the equivalence of CR
manifolds. Tanaka’s theory of prolongations underpins much work on parabolic
geometry—see, for instance, [19]. In a second parallel development, E. M. Stein
and G. B. Folland [9, 10] (and others), developed analysis on stratified groups; in a
third development, non-Riemannian geometry arose in the study of the mechanics
of nonholonomic systems [3, 14]. Carnot groups are now a topic of considerable
interest in their own right—see, for example, [1, 2, 5, 6, 8].

In this paper, we consider conformal maps on Carnot groups. Ottazzi and
B. Warhurst [16] have already shown that the vector space of vector fields that
generate conformal local flows is finite-dimensional. We make this more precise,
and show that either the Carnot group under consideration is the Iwasawa N
group of a real-rank-one noncompact simple Lie group, or all the conformal maps
are affine, that is, compositions of automorphisms and left translations.

In Section 2, we describe Carnot groups and Tanaka prolongation. Carnot
groups are characterised by an inner product on the first layer of the stratification
of their Lie algebras; we show that this inner product has a canonical extension to
the whole Lie algebra. In Section 3, we characterise vector fields that generate a
local flow of conformal mappings. and show that either they form a real-rank-one
simple Lie algebra, or they generate affine flows only. This enables us to show, in
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Section 4, that every conformal mapping defined on a connected open subset Ω of
G is either the restriction to Ω of an affine map or it extends real analytically to
a conformal map of G \ {p}, for a single point p. The latter case occurs only if G
is one of the Iwasawa N groups of a real-rank-one simple Lie group.

2. Carnot groups and Tanaka prolongations

We review the definitions of Carnot groups and Tanaka prolongations. We first
consider stratified Lie groups and their Lie algebras from an algebraic point of view,
and then equip a stratified Lie group with the Carnot–Carathéodory distance to
obtain a Carnot group. We then look at some special maps of Carnot groups and
their Lie algebras.

2.1. Stratified Lie groups and algebras. Let G be a stratified Lie group of
step s. This means that G is connected and simply connected, and its Lie algebra
g admits an s-step stratification:

g = g−1 ⊕ · · · ⊕ g−s,

where [g−j , g−1] = g−j−1 when 1 ≤ j ≤ s, while g−s 6= {0} and g−s−1 = {0};
this implies that g is nilpotent. To avoid degenerate cases, we assume that the
dimension of G is at least 3. The identity of G is written e, and we view the Lie
algebra g as the tangent space at the identity e.

For each t ∈ R
+, the dilation δt : g → g is defined by setting δt(X) := tjX for

every X ∈ g−j and every j = 1, . . . , s, and then extending to g by linearity. The
dilation δt is an automorphism of g. We also write δt for the automorphism of G
given by exp ◦ δt ◦ exp

−1.
The descending central series of g is defined inductively, by g(1) = g, and then

g(j+1) = [g, g(j)]

when j ≥ 1. We define subspaces g[j+] and g[j−] of g by

g[j+] =
∑

k≥j

g−k and g[j−] =
∑

k≤j

g−k.

The dimension of g[j−] is written dj . In the following lemmas, we present some
well known properties of stratified Lie algebras, including the (short) proofs for
the reader’s convenience.

Lemma 2.1. Suppose that T is a homomorphism of the stratified Lie algebra g.
Then T (g[j+]) ⊆ g[j+].

Proof. It is easy to prove by induction that g(j) = g[j+]. Homomorphisms of Lie
algebras preserve the descending central series. �

Throughout, we write Ω for an arbitrary nonempty connected open subset of G.
The differential of a differentiable map f : Ω → G is written f∗. We denote by Lp

the left translation by p in G, that is, Lpq = pq for all q ∈ G. Each X in g then
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induces a left-invariant vector field, denoted X̃ , equal to (Lp)∗(X) at each point
p ∈ G. The set g̃ of all left-invariant vector fields with vector field commutation is
isomorphic to g, and it inherits the stratification of g. The subbundle HG of the
tangent bundle TG, where Hp = (Lp)∗(g−1), is called the horizontal distribution.
We say that a smooth map f : Ω → G is a contact map if f∗ preserves HG.

Lemma 2.2. Suppose that e ∈ Ω, and that f : Ω → G is a contact map on a
stratified Lie group G. Then

(2.1) (f∗)e(g−j) ⊆ g[j−]

for each positive integer j.

Proof. We prove (2.1) by induction on j. Since f is a contact map, f∗ preserves
horizontal vector fields, and the result holds when j = 1. Suppose now that f∗
sends g̃−j into g̃[j−] if j < k, and take X in g−1 and Y in g−j. Then there are
smooth functions ak, where 1 ≤ k ≤ d1, and bk where 1 ≤ k ≤ dj, such that

f∗X̃ =
∑

k≤d1

akX̃k and f∗Ỹ =
∑

k′≤dj

bk′X̃k′.

In the following formula, the indices run over the same ranges. Clearly,

(2.2)

f∗([X̃, Ỹ ]) = [f∗X̃, f∗Ỹ ]

=
[

∑

akX̃k,
∑

bk′X̃k′

]

=
∑

ak(X̃kbk′)X̃k′ −
∑

bk′(X̃k′ak)X̃k

+
∑

akbk′[X̃k, X̃k′].

Thus f∗ sends g̃−j−1 into g̃[(j+1)−], and (2.1) follows. �

The proof of the following complementary result is immediate.

Lemma 2.3. Suppose that T is a homomorphism of a stratified Lie group G. The
following are equivalent:

(i) T is a contact map;
(ii) dT (g−k) ⊆ g−k, for each positive integer k;
(iii) T commutes with dilations.

2.2. Carnot groups. We fix a scalar product 〈·, ·〉 on g−1, and define a left-
invariant scalar product on each horizontal space Hp by setting

〈V,W 〉p = 〈(Lp−1)∗(V ), (Lp−1)∗(W )〉(2.3)

for all V,W ∈ Hp. The left-invariant scalar product gives rise to a left-invariant
sub-Riemannian or Carnot–Carathéodory distance function ̺ on G. To define this,
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we first say that a smooth curve γ is horizontal if γ̇(t) ∈ Hγ(t) for every t. Then
we define the distance ̺(p, q) between points p and q by

̺(p, q) := inf

∫ 1

0

(

〈γ̇(t), γ̇(t)〉γ(t)
)1/2

dt,

where the infimum is taken over all horizontal curves γ : [0, 1] → G such that
γ(0) = p and γ(1) = q. The stratified group G, equipped with the distance ̺, is
known as a Carnot group; we usually omit mention of ̺.

We now equip the whole of g with an inner product. Let {E1, . . . , Ed1} be an
orthonormal basis for g−1. For each positive integer j, we equip g−1⊗

j with the
standard inner product, for which an orthonormal basis is formed of the tensors
Ei1⊗· · ·⊗Eij , where each index varies over {1, . . . , d1}. Define the linear projection
Pj : g−1⊗

j → g−j by the requirement that

(2.4) Pj(X1 ⊗X2 ⊗ · · · ⊗Xj) = [. . . [X1, X2] . . . , Xj ]

for all Xi ∈ g−1. Then g−j is isomorphic to kerP⊥
j , and we can therefore provide

each g−j with the restriction to kerP⊥
j of the inner product. We extend the inner

product to g by keeping the different spaces g−j orthogonal; the new inner product
is still denoted by 〈·, ·〉. The next lemma follows from the definitions.

Lemma 2.4. The projection Pj : g−1⊗
j → g−j and the inner products just defined

have the following properties:

(i) for all τ ∈ g−1⊗
j, we have ‖Pj(τ)‖ ≤ ‖τ‖.

(ii) for allW ∈ g−j, there exists τ ∈ g−1⊗
j such that Pj(τ) =W and ‖τ‖ ≤ ‖W‖.

Definition 2.5. We define a Riemannian metric on G by the formula

〈V,W 〉p = 〈(Lp−1)∗(V ), (Lp−1)∗(W )〉(2.5)

for all V,W ∈ Tp.

2.3. Morphisms and affine maps. We now discuss homomorphisms and auto-
morphisms of Carnot groups. Since G is simply connected and the exponential
map exp : g → G is a diffeomorphism, T is a homomorphism or automorphism of
G if and only if its differential dT is a homomorphism or automorphism of g, and
T = exp ◦ dT ◦ exp−1.

For a homomorphism of g, preserving all the subspaces g−j of the stratification is
equivalent to commuting with dilations. We use the adjective “strata-preserving”
to describe such homomorphisms, both at the algebra level and at the group level.
We denote by Aut(g) the Lie group of strata-preserving automorphisms of g, and
by Aut(G) the corresponding Lie group of automorphisms of G.

The Lie algebra of the group Aut(g) is the Lie algebra of strata-preserving
derivations of g, which we denote by Der(g). The set {δt : t ∈ R

+} of dilations
is a one parameter subgroup of Aut(g), whose Lie algebra is generated by the
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derivationH ∈ Der(g) defined byH(X) := jX , for everyX ∈ g−j and j = 1, . . . , s.
In particular, δes = exp(sH) for every s ∈ R.

Lemma 2.6. Suppose that T is a strata-preserving automorphism of g. Then
∥

∥T
∣

∣

g−j

∥

∥ ≤
∥

∥T
∣

∣

g−1

∥

∥

j
.

Proof. The standard extension of T to a linear mapping on g−1⊗
j has operator

norm at most
∥

∥T
∣

∣

g−1

∥

∥

j
. The result now follows from Lemma 2.4. �

We now consider various special kinds of automorphisms of G. For the moment,
we say that an automorphism T of G is distance-preserving if

̺(Tx, Ty) = ̺(x, y) ∀x, y ∈ G.

Since the distance on G is left-invariant, and is defined in terms of horizontal
curves, T is distance-preserving if and only if its differential dT on g is isometric
on g−1, that is,

‖dT (X)‖ = ‖X‖ ∀X ∈ g−1.

Lemma 2.7. If T is an automorphism of g that is isometric on g−1, then T is
isometric on g, that is,

‖T (X)‖ = ‖X‖ ∀X ∈ g.

Proof. This follows from Lemma 2.6 applied to T and T−1. �

We write IsoDer(g) for the space of derivations of g that are skew-symmetric on
g−1. From Lemma 2.7, every element of IsoDer(g) is actually skew-symmetric on
all g.

Now we consider conformal automorphisms of g. An automorphism T of g is
conformal with dilation factor t if and only if

‖T (X)‖ = t ‖X‖ ∀X ∈ g−1.

The Lie algebra of the group ConfAut(g) of conformal automorphisms of g is the
Lie algebra ConfDer(g) of conformal derivations, which is equal to RH+IsoDer(g).

If T is an automorphism of G, then dT is conformal, with dilation factor t, if
and only if

̺(Tx, Ty) = t̺(x, y) ∀x, y ∈ G,

or, equivalently, δ−1
t T is distance-preserving.

Corollary 2.8. If T is a conformal automorphism of g, then

‖T (X)‖ = ‖δtX‖ ∀X ∈ g,

where T dilates by t on g−1.

Proof. This follows immediately from Lemma 2.7. �
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Corollary 2.9. If T is a conformal automorphism of g, and ‖T (X)‖ = ‖X‖ for
one nonzero element X of g, then

‖T (X)‖ = ‖X‖ ∀X ∈ g.

Proof. This follows immediately from the previous corollary. �

An affine map is a map composed of an automorphism and a translation. To
some extent, it is irrelevant whether the translation is on the left or the right, as
left and right translations differ by a conjugation. However, since left translations
are distance-preserving, while right translations are not (unless G is abelian), it is
more convenient to deal with left translations.

2.4. General maps. Recall that Ω denotes a connected open subset of G. We
recall that a continuous map f : Ω → G is Pansu differentiable at p ∈ Ω if the
limit

Df(p)(q) = lim
t→0+

δ−1
t ◦ L−1

f(p) ◦ f ◦ Lp ◦ δt(q)

exists, uniformly for q in compact subsets of G; if Df(p) exists, then it is a strata-
preserving homomorphism of G. Then there is a Lie algebra homomorphism df(p) :
g → g such that Df(p) ◦ exp = exp ◦ df(p). We call Df(p) the Pansu derivative
and df(p) the Pansu differential of f at p. By construction, both Df(p) and
df(p) commute with dilations, and so in particular, df(p) is a strata-preserving Lie
algebra homomorphism.

We say that a C1 map f : Ω → G is isometric or conformal if df(p) is isometric
or conformal for each point p ∈ Ω; the dilation factor in conformality may vary
from point to point.

Lemma 2.10. Suppose that f : Ω → G is C1. Then f is distance-preserving if
and only if df(p) is an isometry at each point p in Ω.

Proof. It is clear that if f is isometric, then f preserves the lengths of admissible
curves and hence distances. Conversely, if f preserves distances, then differentia-
tion shows that the Pansu differential is an isometry. �

At this point, it is clear that we may call distance-preserving maps isometries
without risk of confusion. The following result was first proved by E. Le Donne
and Ottazzi, in greater generality [12].

Theorem 2.11. Suppose that f : Ω → G is an isometry. Then f is the restriction
to Ω of an isometric affine mapping, that is, the composition of an isometric
automorphism and a left translation.

2.5. Tanaka prolongation. In [18], Tanaka introduced the prolongation of a
stratified Lie algebra relative to a subalgebra g0 of Der(g). The prolongation
Prol(g, g0) has the following properties:

(P1) Prol(g, g0) =
∑t

i=−s gi is a graded Lie algebra and g =
∑−1

i=−s gi;
6



(P2) if U ∈ gk where k ≥ 0 and [U, g−1] = 0, then U = 0;
(P3) Prol(g, g0) is maximal among the Lie algebras satisfying (P1) and (P2).

In (P1), the upper limit t may be a natural number or +∞.
We only consider prolongations satisfying the additional condition that H ∈ g0,

where H is the element in Der(g) such that [H,X ] = jX for all X ∈ g−j and all
j ∈ Z

+. The next lemma will clarify the graded structure of Prol(g, g0).

Lemma 2.12. The operator ad(H) is diagonalisable, and ad(H)|gk = −kI for all
k ∈ Z. In particular, the element H is in the centre of g0. Hence [gj , gk] ⊆ gj+k for
all integers j and k, and [g0, gk] = gk for all nonzero integers k. Further, the centre
Z(Prol(g, g0)) of Prol(g, g0) is trivial, so ad is faithful on Prol(g, g0). Finally, if
Prol(g, g0) is finite-dimensional, then any ideal of Prol(g, g0) is also graded.

Proof. We have already seen that

ad(H)|gk = −kI

for all negative integers k, and we prove it by induction for all integers k, starting
at −1. Suppose that k ≥ 0 and that ad(H)|gj = −jI if j ≤ k − 1. We must show
that ad(H)|gk = −kI.

Take Y ∈ gk and X ∈ g−1. Since [Y,X ] ∈ gk−1,

[[H, Y ], X ] = [H, [Y,X ]] + [[H,X ], Y ] = −(k − 1)[Y,X ] + [X, Y ] = −k[Y,X ].

Since gk is completely determined by its action on g−1, it follows that ad(H) = −kI
on gk.

It follows immediately that Z(Prol(g, g0)) ⊆ g0 and [g0, gk] = gk for all nonzero
integers k. Further, the Jacobi identity implies that [gj , gk] ⊆ gj+k for all integers
j and k. If Z ∈ Z(Prol(g, g0)), then Z ∈ g0, and hence Z is a derivation of g that
is null, and so Z = 0.

Suppose that t is an ideal in the finite-dimensional vector space Prol(g, g0).
Then t is closed in Prol(g, g0). If X ∈ t, then we may write X =

∑

j Xj , where

Xj ∈ gj. Write ̄ for max {j : Xj 6= 0}. Since Ad(exp(tH))X ∈ t, we see that
e−t̄

∑

j e
tjXj ∈ t and hence, taking limits, X̄ ∈ t. Induction shows that all

components of X are in t. �

2.6. A graded version of the Levi–Malcev theorem. We now suppose that
the Lie algebra Prol(g, g0) is finite-dimensional. We say that a subalgebra a of
Prol(g, g0) isH-graded if a =

∑

j(a∩gj). We say thatX ∈ Prol(g, g0) is semisimple

or nilpotent if ad(X) is semisimple or nilpotent. Recall that if D ∈ Der(g), then
we may write D = Ds + Dn, where Ds is semisimple while Dn is nilpotent, and
both Ds and Dn lie in Der(g) (see [4, Section 1, Proposition 4]. We say that a Lie
subalgebra g0 of Der(g) is splittable if the semisimple and the nilpotent parts of
each D ∈ g0 also lie in g0. Evidently Der(g) is splittable, as is ConfDer(g), because
this contains semisimple elements only. The next result is due to C. Medori and
M. Nacinovich [13].
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Theorem 2.13. Suppose that g0 is a splittable Lie subalgebra of Der(g), and that
Prol(g, g0) is finite-dimensional. Then the solvable radical r of Prol(g, g0) is H-
graded, and it is possible to choose an H-graded semisimple subalgebra s such that
Prol(g, g0) = s+ r.

3. Conformal vector fields

Henceforth, we suppose that g0 = ConfDer(g), and denote by p the Lie algebra
Prol(g, g0) that defines the space of conformal vector fields on G. We decompose
p as

∑

k gk. According to Ottazzi and Warhurst [16], p is finite-dimensional (we
agreed that the dimension of a Carnot group is at least 3), and p and the space of
conformal vector fields, that is, vector fields whose local flow consists of conformal
mappings, are isomorphic Lie algebras. In this case, there is a graded isomorphism
between the prolongation algebra and a Lie algebra of vector fields on G. We will
use upper case letters from U to Z to indicate elements of p while Ŭ , V̆ , and so
on will indicate the corresponding vector fields: for a smooth function u on G,

(Ŭ)u(p) =
d

dt
u(φU

t (p))
∣

∣

t=0
,

where φU
t is the (local) flow associated to U . More precisely, given a relatively

compact open subset Ω of G, there is a subinterval I of R, which contains 0, such
that φU

t (p) is defined in G for all p in Ω and all t in I, and φ̇U
t (p) = (Ŭ)q, where

the dot denotes differentiation with respect to t and q = φU
t (p). In particular, if

U ∈ g, then

(Ŭ)u(p) =
d

dt
u(exp(−tU)p)

∣

∣

t=0

for all smooth functions u on G.

Lemma 3.1. In the conformal prolongation algebra p, suppose that X ∈ Z(g)\{0}
and U ∈

∑

k≥1 gk \ {0}. Then [U,X ] 6= 0.

Proof. Suppose, with a view to a contradiction, that [U,X ] = 0.

The flow generated by X̆ is left translation, which is defined in all G and for all
time. We denote by φU

t the local flow corresponding to Ŭ ; we may assume that
φU
t (exp(sX)p) is defined for all p in an open set Ω and all s and t in a time interval
I that contains 0. Because X and U commute, so do the flows, and thus

φU
t (exp(sX)p) = exp(sX)φU

t (p)

for all p ∈ Ω and all s and t in I. Since X is in the centre of g, exp(sX) is in the
centre of G, and so

φU
t (p exp(sX)) = φU

t (p) exp(sX)

Taking the derivative with respect to s at 0, we deduce that

d(φU
t )X = X,
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and in particular,

(3.1) ‖dφU
t (p)X‖ = ‖X‖.

Since φU
t is conformal, Corollary 2.9 shows that

‖dφU
t (p)Z‖ = ‖Z‖,

for every Z ∈ g and p ∈ Ω. This implies that φU
t is isometric in Ω, whence by

Theorem 2.11, the vector field Ŭ must be generated by vectors in p ∩
∑

k≤0 gk,
which is the desired contradiction. �

Theorem 3.2. Suppose that G is a Carnot group. Then either p = g+ g0 or p is
a noncompact simple Lie algebra of real rank 1.

Proof. Suppose that g1 = {0}; then p = g + g0 = g + ConfDer(g). Suppose that
g1 6= {0}; we will show that p is simple of real rank 1.

First, we split p into a semisimple and a solvable part. By Theorem 2.13, we
may write p = s + r, where r is the radical of p and s is semisimple; both r and s
are H-graded. As usual, we write r =

∑

j rj .

Next, we show that r0 ⊆ IsoDer(g) and H ∈ s. If D ∈ g0, then D = sH +M ,
where M ∈ IsoDer(g) and s ∈ R, and so D is semisimple. We claim that D /∈ r
unless s = 0. Indeed, the eigenvalues of ad(D) on gj are all of the form x + iy,
where x = −sj and y is real; hence ad(D) is invertible on gj when j 6= 0 and s 6= 0.
If it were true that D ∈ r, then it would follow that gj ⊂ r whenever j 6= 0, since r
is an ideal. Since g1 6= {0}, we can find X ∈ g1 and Y ∈ g−1 such that [X, Y ] 6= 0.
Then [X, Y ] would be both semisimple (since [X, Y ] ∈ g0) and nilpotent (since
[X, Y ] ∈ [r, r]); this is absurd, and so D /∈ r. We deduce that r0 ⊆ IsoDer(g) and
H ∈ s.

Third, we write s as s0⊕ s1⊕· · ·⊕ sℓ, where each sj is simple; we will show that
exactly one of the sj is noncompact. Every semisimple element S of a semisimple
Lie algebra s lies in a Cartan subalgebra; indeed, by [4, Section 2, Proposition 10],
a Cartan subalgebra of the commutant of S, which must contain S, is a Cartan
subalgebra of s. We take a Cartan subalgebra h of s that contains H . Then h ⊆ g0
since [H,X ] = 0 for all X ∈ h. We may write

h = (h ∩ s0)⊕ (h ∩ s1)⊕ · · · ⊕ (h ∩ sℓ) ,

where each h∩ sj is a Cartan subalgebra of sj. Consider the Killing form of s; this
must be negative definite on IsoDer(g) and positive definite on RH . If there were
several noncompact summands sj , then there would be a subspace of h on which
the Killing form is positive definite of dimension at least 2. Thus there must be
one noncompact summand, s0 say, which contains H , and all the other summands
are compact. Further, s0 is of real rank one since the centraliser of H in s0 is
RH + IsoDer(g) ∩ s0, and IsoDer(g) ∩ s0 is compact.

Now, we show that r is trivial, arguing by contradiction. Supposing otherwise,
g contains a nontrivial abelian ideal a. Since a is an ideal, ad(g−1)

ka ⊆ a. Because
9



g is nilpotent, there must be some positive integer k such that ad(g−1)
k−1a 6= {0}

while ad(g−1)
ka = {0}. Thus a∩Z(g) 6= {0}. Under the adjoint action of s, we can

split a into s-invariant subspaces, on each of which s acts by an irreducible finite-
dimensional representation. By taking a suitable subspace v, we may suppose that
v ∩ Z(g) 6= {0}.

The subspace v is abelian because a is, and decomposes into weight spaces for
the Cartan subalgebra h; the set of weights is closed under multiplication by −1,
by representation theory. Since H ∈ h and ad(H), acting on p, is diagonalizable
with integer eigenvalues, we may write

v =
k

∑

j=−k

vj,

where vj = v ∩ gj . We may suppose that v−k ∩ Z(g) 6= {0}. By Lemma 3.1,
[v−k, vk] 6= {0}, which contradicts the fact that v is abelian. Thus r must be
trivial, and p = s.

Finally, we show that s is simple. On the one hand, sj ⊆ g0 when j 6= 0. On the
other hand, g−1 ⊆ s, and so g−1 ⊆ s0. The elements of sj , where j > 0, commute
with those of s0, and so [sj, g−1] = {0}. This contradicts the definition of g0 as a
set of derivations of g, unless sj = {0}. �

4. Conformal mappings on Carnot groups

In this section, we state and prove our characterization of conformal mappings
of Carnot groups, which is a consequence of Theorem 3.2. Before we do this, we
recall two facts that we will need.

First, if S is a simple Lie group of real rank 1, then S has subgroups N , N̄ , M
and A such that NMAN̄ is an open dense submanifold of S, whose complement
is of the form wMAN̄ for a particular element w of S. Thus we may identify the
quotient space S/MAN̄ with the one-point compactification N ∪{∞}, and S acts
on this space on the left. The nilpotent group N is a Carnot group, and the action
of S on N ∪ {∞} is conformal.

Second, the nilradical is the maximal nilpotent ideal of a Lie algebra. Every
Lie algebra homomorphism sends the nilradical into the nilradical, so every Lie
algebra automorphism preserves the nilradical.

Theorem 4.1. Let G be a Carnot group, let Ω be a connected open subset of G,
and let f : Ω → G be a conformal mapping. Then there are two possibilities:

(i) G is not the Iwasawa N group of a real-rank-one simple Lie group S; in this
case, f is the restriction to Ω of a conformal affine map of G, and extends
analytically to a conformal map on G.

(ii) G is the Iwasawa N group of a real-rank-one simple Lie group S; in this case,
f is the restriction to Ω of the action of an element of S on N ∪ {∞}; thus
f extends analytically to a conformal map on G or G \ {p} for some point p.
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Proof. Let us first observe that a polynomial vector field is determined by its
restriction to any nonempty open subset of G; consequently, we do not need to
distinguish between such vector fields on G and their restrictions to open subsets.

Suppose that f : Ω → G is conformal. By composing with left translations, we
may suppose that e ∈ Ω and f(e) = e.

Each conformal vector field Ŭ on G induces a local flow φU
t on a neighbourhood

of e in Ω; we define a new conformal local flow ψt on a neighbourhood of e by
conjugation

(4.1) ψt = f ◦ φU
t ◦ f−1.

Differentiation with respect to t yields a new conformal vector field V̆ on a neigh-
bourhood of e such that ψt = φV

t . Further, if φU
t fixes e for all t, then so does

φV
t . The map f̆ : U 7→ V is an automorphism of the prolongation algebra p, and

leaves invariant the subalgebra pe of p corresponding to vector fields that vanish
at e. From (4.1), we see that

(4.2) φ
f̆(U)
t (e) = f(φU

t (e)).

Assume now that G is not the Iwasawa N group of a real-rank-one simple Lie
group S. By Theorem 3.2, the Lie algebra of conformal vector fields is isomorphic
to g + g0. The nilradical of g+ g0 is g, and so f̆ preserves g; the subalgebra pe is
equal to g0, so f̆ also preserves g0. Clearly there is an automorphism T of G, not
necessarily strata-preserving, such that dT = f̆ .

Now φW
t (e) = exp(−tW ) for all W ∈ g. From (4.2), it follows that

f(exp(−tU)) = exp(−tf̆(U)) = T exp(−tU)

for all U in g and all t ∈ R, that is, f is an automorphism. Since f is also a
contact map, the automorphism is strata-preserving, by Lemma 2.3, and since f
is conformal, the automorphism is in ConfAut(g).

The case where G is the Iwasawa N group of a real-rank-one simple Lie group
S is essentially contained in [7, Section 5]; in that paper, the assumption of real
rank at least two serves only to ensure that the space of vector fields appropriate
to the mappings under consideration is finite-dimensional. �

Remarks 4.2. The result immediately generalize to 1-quasiconformal maps, thanks
to [5]. The hypothesis that Ω is connected is essential, in the sense that if f1 :
Ω1 → G and f2 : Ω2 → G are conformal, and Ω1 and Ω2 are disjoint, then f is
conformal; however, an analytic extension to G is not possible. The hypothesis
that G is a Carnot group is also important, since on compact Lie groups with a
bi-invariant Riemannian metric, inversion is conformal but not affine. If G is a
stratified group with a sub-Finsler metric, then a similar result holds; much as
argued in [12], a sub-Finsler conformal map is also a sub-Riemannian conformal
map for an appropriate metric.
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